Learning Complex Swarm Behaviors by Exploiting Local Communication Protocols with Deep Reinforcement Learning
نویسندگان
چکیده
Swarm systems constitute a challenging problem for reinforcement learning (RL) as the algorithm needs to learn decentralized control policies that can cope with limited local sensing and communication abilities of the agents. Although there have been recent advances of deep RL algorithms applied to multi-agent systems, learning communication protocols while simultaneously learning the behavior of the agents is still beyond the reach of deep RL algorithms. However, while it is often difficult to directly define the behavior of the agents, simple communication protocols can be defined more easily using prior knowledge about the given task. In this paper, we propose a number of simple communication protocols that can be exploited by deep reinforcement learning to find decentralized control policies in a multi-robot swarm environment. The protocols are based on histograms that encode the local neighborhood relations of the agents and can also transmit task-specific information, such as the shortest distance and direction to a desired target. In our framework, we use an adaptation of Trust Region Policy Optimization to learn complex collaborative tasks, such as formation building, building a communication link, and pushing an intruder. We evaluate our findings in a simulated 2D-physics environment, and compare the implications of different communication protocols.
منابع مشابه
Learning to Communicate with Deep Multi-Agent Reinforcement Learning
We consider the problem of multiple agents sensing and acting in environments with the goal of maximising their shared utility. In these environments, agents must learn communication protocols in order to share information that is needed to solve the tasks. By embracing deep neural networks, we are able to demonstrate endto-end learning of protocols in complex environments inspired by communica...
متن کاملLearning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks
We propose deep distributed recurrent Qnetworks (DDRQN), which enable teams of agents to learn to solve communication-based coordination tasks. In these tasks, the agents are not given any pre-designed communication protocol. Therefore, in order to successfully communicate, they must first automatically develop and agree upon their own communication protocol. We present empirical results on two...
متن کاملMulticast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملACCNet: Actor-Coordinator-Critic Net for "Learning-to-Communicate" with Deep Multi-agent Reinforcement Learning
Communication is a critical factor for the big multi-agent world to stay organized and productive. Typically, most multi-agent “learning-to-communicate” studies try to predefine the communication protocols or use technologies such as tabular reinforcement learning and evolutionary algorithm, which can not generalize to changing environment or large collection of agents. In this paper, we propos...
متن کاملInverse Reinforcement Learning in Swarm Systems
Inverse reinforcement learning (IRL) has become a useful tool for learning behavioral models from demonstration data. However, IRL remains mostly unexplored for multi-agent systems. In this paper, we show how the principle of IRL can be extended to homogeneous large-scale problems, inspired by the collective swarming behavior of natural systems. In particular, we make the following contribution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.07224 شماره
صفحات -
تاریخ انتشار 2017